
CSE 210: Computer Architecture

Lecture 4: Introduction to MIPS

Stephen Checkoway

Oberlin College

Oct. 11, 2021

Slides from Cynthia Taylor

1

Announcements

• Problem Set 1 due Friday at 11:59 pm

• Office hours Tuesday 13:30 – 14:30

Why you should learn (a little) assembly

• Learn what your computer is fundamentally capable of

• By learning about how high level mechanisms are created in

assembly, we learn what is fast, what is slow . . .

• Might use it for reverse engineering, embedded systems,

compilers

The MIPS Instruction Set

• Used as the example throughout the book

• Stanford MIPS commercialized by MIPS Technologies (owned by John L.

Hennessy, who wrote your book.)

• Used in Embedded Systems

– Applications in consumer electronics, network/storage equipment, cameras,

printers, …

• Typical of many modern ISAs

Three Types of Instruction

• Arithmetic (R)

• Immediate (I)

• Jump (J)

Arithmetic and Logical Operations

• Add and subtract, three operands

– Two sources and one destination

add a, b, c # a = b + c

sub a, b, c # a = b – c

and a, b, c # a = b & c (bit-wise AND)

• All arithmetic and logical operations have this form

Convert to MIPS: f = (g + h) - (i + j);

A.

B.

C.

D. More than one of these is correct

add t0, g, h
add t1, i, j
sub f, t0, t1

sub f, (add g,h), (add i,j)

add f, g, h
sub f, i, j

Register Operands

• Arithmetic instructions use register operands

• MIPS has a 32 × 32-bit register file

– Numbered 0 to 31

– 32-bit data called a “word”

Aside: MIPS Register Convention

Name Register
Number

Usage

$zero 0 constant 0 (hardware)

$at 1 reserved for assembler

$v0 - $v1 2-3 returned values

$a0 - $a3 4-7 arguments

$t0 - $t7 8-15 temporaries

$s0 - $s7 16-23 saved values

$t8 - $t9 24-25 temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return addr (hardware)

Register Operand Example

• C code:

f = (g + h) - (i + j);

– f, …, j in $s0, …, $s4

• Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Some R-type instructions

• add dest, src1, src2

• sub dest, src1, src2

• div dest, src1, src2 # Pseudoinstruction!

• mul dest, src1, src2

• move dest, src # add dest, $zero, src

• and dest, src1, src2

• or dest, src1, src2

• nor dest, src1, src2

• xor dest, src1, src2

Questions about Arithmetic Operations?

Memory Instructions

• lw $t0, 0($t1)

– $t0 = Mem[$t1+0]

– Loads 4 bytes from $t1, $t1+1, $t1+2, and $t1+3

• sw $t0, 4($t1)

– Mem[$t1+4] = $t0

– Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

• These instructions are the cornerstones of our being able to go

to and from memory

14

Accessing the Operands

There are typically two locations for operands – registers (internal storage

e.g., $t0 or $a0) and memory. In each column we have which—reg or

mem—is better. Which row is correct?

Faster

access

Fewer bits to

specify address

More

locations

A Mem Mem Reg

B Mem Reg Mem

C Reg Mem Reg

D Reg Reg Mem

E None of the above

Load-store architectures
can do:

add r1=r2+r3

and

load r3, M(address)

Þ forces heavy dependence

on registers, which is

exactly what you want in

today’s CPUs

can’t do

add r1 = r2 + M(address)

- more instructions

+ fast implementation

Memory

• Main memory used for composite data
– Arrays, structures, dynamic data

• Memory is byte addressed
– Each address identifies an 8-bit byte

• Words are aligned in memory
– Address of a word must be a multiple of 4

Memory Organization

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• “Byte Addressing" means that the index points to a byte of

memory.
0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232 - 1

• 230 words with byte addresses 0, 4, 8, ... 232 - 4

0

4

8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

Processor X is 8 bit byte-addressable. If you have a pointer at address 0000 0000

0000 1000 and you increment it by one (0000 0000 0000 1001). What does the new

pointer (0000 0000 0000 1001) point to, relative to the original pointer (0000 0000

0000 1000)?

A) The next word in memory

B) The next byte in memory

C) Either the next word or byte – depends on if you use that address for a load byte

or load word

D) Pointers are a high level construct – they don’t make sense pointing to raw

memory addresses.

E) None of the above.

Processor Y is 32 bit word-addressable. If you have a pointer at address 00 0000 0000

1000 and you increment it by one (00 0000 0000 1001). What does the new pointer

(00 0000 0000 1001) point to, relative to the original pointer (00 0000 0000 1000)?

A) The next word in memory

B) The next byte in memory

C) Either the next word or byte – depends on if you use that address for a load byte

or load word

D) Pointers are a high level construct – they don’t make sense pointing to raw

memory addresses.

E) None of the above.

Reading

• Next lecture: Assembly

– 2.3

• Problem Set 1: Due Friday at 11:59pm via Gradescope

30

